Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Pulse palpation has been recommended as the first step of screening to detect atrial fibrillation. We aimed to determine and compare the accuracy of different methods for detecting pulse irregularities caused by atrial fibrillation. METHODS: We systematically searched MEDLINE, EMBASE, CINAHL and LILACS until 16 March 2015. Two reviewers identified eligible studies, extracted data and appraised quality using the QUADAS-2 instrument. Meta-analysis, using the bivariate hierarchical random effects method, determined average operating points for sensitivities, specificities, positive and negative likelihood ratios (PLR, NLR); we constructed summary receiver operating characteristic plots. RESULTS: Twenty-one studies investigated 39 interventions (n = 15,129 pulse assessments) for detecting atrial fibrillation. Compared to 12-lead electrocardiography (ECG) diagnosed atrial fibrillation, blood pressure monitors (BPMs; seven interventions) and non-12-lead ECGs (20 interventions) had the greatest accuracy for detecting pulse irregularities attributable to atrial fibrillation (BPM: sensitivity 0.98 (95% confidence interval (CI) 0.92-1.00), specificity 0.92 (95% CI 0.88-0.95), PLR 12.1 (95% CI 8.2-17.8) and NLR 0.02 (95% CI 0.00-0.09); non-12-lead ECG: sensitivity 0.91 (95% CI 0.86-0.94), specificity 0.95 (95% CI 0.92-0.97), PLR 20.1 (95% CI 12-33.7), NLR 0.09 (95% CI 0.06-0.14)). There were similar findings for smartphone applications (six interventions) although these studies were small in size. The sensitivity and specificity of pulse palpation (six interventions) were 0.92 (95% CI 0.85-0.96) and 0.82 (95% CI 0.76-0.88), respectively (PLR 5.2 (95% CI 3.8-7.2), NLR 0.1 (95% CI 0.05-0.18)). CONCLUSIONS: BPMs and non-12-lead ECG were most accurate for detecting pulse irregularities caused by atrial fibrillation; other technologies may therefore be pragmatic alternatives to pulse palpation for the first step of atrial fibrillation screening.

More information

Type

Publisher

Sage

Publication Date

13/10/2015

Volume

DOI: 10.1177/2047487315611347

Keywords

Atrial fibrillation, screening, diagnostic accuracy, irregular pulse